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Tile one-dimensional reaction-diffusion equations for tile process 

A + B - , 2 A ,  B + C ~ 2 B ,  C+A--*2C (D) 

are extended to include tile counteracting reactions 

A + 2 B ~ 3 B ,  B+2C--,3C, C+2A-- ,3A (R) 

which have a reaction rate ~ relative to the direct process (D). This process can 
be seen as a three-component version of the reaction which is described by the 
Fisher-Kolmogorov equation. The fixed points of the equations are studied as 
a function of ~. It is shown that the equations admit solutions which consist of 
a series of traveling fronts. Other solutions exist which are traveling periodic 
waves. A very remarkable fact is that for these waves exact expressions can be 
constructed. 

KEY WORDS: Fisher-Kolmogorov equation; traveling fronts; fixed points; 
population dynamics: bifurcations; stability. 

1. T H E  A B C  M O D E L  

React ion-diffusion processes and pat tern format ion have been widely 
studied in physics and chemistry, as well as in mathemat ics  and biology. 
References 1-4 give an almost  exhaustive description of the activities in this 
field and  of-the state of the art. In  general, criteria for the behavior  of a 
system do not  exist and for each new system it is necessary to develop new 
methods  in order to detect its characteristic properties. This is par t iculary 
true when the governing equat ions  have more than one component .  

In the present paper  we will give an example of such a system, which 
we believe shows sufficiently many  new aspects to justify its presentat ion.  
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Consider an infinite n-dimensional coordinate space, in which three 
species A, B, and C are competing in a way described by the direct reaction 

A + B ~ 2 A ,  B + C ~ 2 B ,  C + A ~ 2 C  (D) 

In words: when two individuals A and B meet, B is converted into A. The 
species B, however, tries to survive by conquering C and similarly C beats 
A. This reaction is similar to the cyclical "Rock-paper-scissor's game," of 
which the first biological example has been found recently/5' 6~ When diffu- 
sion is added, we arrive at a system of equations which can be seen as a 
generalization of the Fisher-Kolmogorov equation. This well-studied equa- 
tion is obtained by considering the reaction A + B ~ 2A, with a diffusion 
term. By taking the concentration of C=0 ,  we see that (D) then reduces 
to this equation. 

It will be shown that the reaction part of the equation corresponding 
to (D) (a system of ordinary differential equations which is obtained by 
ignoring the diffusion term) has an integral of motion. In terms of ordinary 
differential equations, this is a structurally unstable situation. It is remedied 
by introducing the reverse reaction 

A+2B---,3B, B+2C--,3C, C + 2 A ~ 3 A  (R) 

which has the following interpretation. The B-population, in an effort to 
defend itself against A, changes its strategy, and decides sometimes to travel 
in pairs, so that a single A can be overcome in the reaction A + 2B ~ 3B. The 
C and A populations, however, adopt the same strategy, so that as a result 
the system is described by the reactions (D) and (R). 

In this paper we will study the equation derived from (D) and (R), 
emphasizing two aspects: its similarity with the Fisher-Kolmogorov equa- 
tion and the qualitative effect of adding reaction (R) to the (unstable) reac- 
tion (D). 

The three reaction constants of the reactions (D) are ko and those of 
the reactions (R) are also given equal values k R. The diffusion constants of 
the three species are equal to D. Since in the reactions (D) and (R) the 
number of individuals does not change, the sum of the population densities 
S = A + B + C varies only because of migration: 

as  
at D AS (1.1) 

In order to simplify the problem we will restrict ourselves to the case in 
which S has spread uniformly and therefore also has become constant 
in time S =  So. We now introduce So as a new unit of concentration, 
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Fig. 1. Representation of A, B, and C as a point of an equilateral triangle of unit height. The 
Cartesian coordinates x and y are also shown. For typographical reasons we write a, b, c 
instead of A, B, C. 

r = 1/knSo as a new unit of time, and l =  ,r as a new unit of length. 
With ~ = kRzSZo as a new measure for the reaction constant of the reactions 
(R), the reaction-diffusion equations become in dimensionless variables 

OA 
- ~  = A(B - C) + oLA(AC-- B 2) + AA 

OB 
--~= B( C -  A) +oLB(BA - C z) + AB (1.2) 

OC 
O----t = C( A - B )  + o~C( C B -  A z) + AC 

These equations are to be studied under the conditions 

A + B + C = I ,  A , B , C > O  (1.3) 

At a certain moment and at a given point in space the values of A, B, and 
C will be .represented by the altitudes of a point inside an equilateral 
triangle of unit height, as shown in Fig. 1. From now on we will also 
impose the further restriction to one unbounded space-dimension and we 
will denote the coordinate by u. 

Condition (1.3) is automatically satisfied when we introduce Cartesian 
coordinates x and y (Fig. 1) and write A, B, and C as 

, h ~ l  1 1 1 1 j -~--~x/~x--~_y,_ B = ~ +  ~ x / ~ x - - 5 ) ,  C = � 8 9  y (1.4) 

822/87/5-6-12 



1148 Ruijgrok and Ruijgrok 

In terms of these variables the reaction-diffusion equations (1.2) can be 
written in a form in which the vector field describing the reaction is 
separated into a source-free and a rotation-free part: 

02x(u, t) 
Ou 2 

O2y(u, t) 
O~l 2 

where f is an abbreviation for 

_ ~ x +  f(o 0 -~  8P OV 

Oy 8P OV 
--Ot f ( ~ ) ~ - - O ~ y  (1.5) 

The function P = ABC is the product of the three concentrations, which in 
Cartesian coordinates becomes equal to 

_ 3 . 2  �88 P(x, y) = ~ -- �88 + y2) _ ~x y + 

while the potential is given by 

(1.7) 

By writing the equations in the form (1.5) the invariance under a cyclic 
permutation can still be recognized, because P(x, y) and V(x, y) are simple 
functions of the invariant polynomials x 2 + y2 and y(3x 2 - y2). 

The function P(x, y), which is the product of the three altitudes of a 
point inside an equilateral triangle, has some interesting properties. 
It satisfies AP(x, y ) =  - 1  and P(x, y ) = 0  on the boundary of the triangle. 
Therefore, it is the solution of the corresponding electrostatic problem. 
Also, it gives the mean exit time of a random walker to escape from an 
equilateral triangle. ~7~ 

Singular points are defined as those values of (A, B, C) for which the 
three reaction terms in the r.h.s, of (1.2) simultaneously vanish. It is clear 
that this happens in the corners A = ( 1, 0, 0), B = (0, 1, 0) and C = (0, 0, 1 ) 
and also in the midpoint M = ( 1 / 3 ,  1/3, 1/3). With some simple algebraic 
manipulations it can be shown that there are no other singular points lying 
strictly inside the triangle. 

For a > 1 there are, however, three other singular points, one on each 
side. On the AB-side this point is T =  ( 1 - I/a, l/a, 0). For a = 1 it appears 
at B. With increasing a it then moves toward A, which is approached for 

-~ co. The other fixed points R and S, which also occur only for a > 1, are 
obtained from T by rotations over + 2n/3 around M. 

V(x, y) = ~(x'- + y2) - "~x-yl ~ + 1_ y3  _ 3 2 + T.~( x y2)2 (1.8) 
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Having found the solutions which are constant in space and time, we 
must also answer the question as to their stability under small perturba- 
tions and how this changes with a. This will be done in the next section. 

2. THE SINGULAR SOLUTIONS AND THEIR STABILITY 

The Centre  point  M. Keeping only the terms in (1.5) which are 
linear in x and in y, the general solution can be constructed in the standard 
way. 

An arbitrary bounded Fourier component,  written as 

(x(u, t), y(u, t ) )  T =  eik"+~(xo, yo) r (2.1) 

w i t h k r e a l ,  i s a s o l u t i o n o n l y i f 2 = 2 +  o r 2 = 2  ,where  

0c ~ i 
2+ = g - k -  +_~ f (~)  (2.2) 

From (2.2) it follows that M is stable when ~ < 0 and unstable when ~ > 0, 
since we can then find values of k such that Re 2+ = ~ / 6 -  k 2 >  0. 

The Corners A, B, a n d  C. We now linearize (1.5) in one of the 
corners, for which we take B = ( 1 / v / 3 , - 1 / 3 ) .  Defining w and z by x =  
1/x/~ + w, y = - 1/3 + z, an arbitrary bounded Fourier component, written as 

(w(u, t), z(u, t ) ) v =  eik"+;"(Wo, zo) r (2.3) 

with k real, is a solution only if 2 = 2 + or 2 = 2 _, where 

2 + = l - c t - k  2 and 2 _ = - l - k  2 (2.4) 

From (2.4) it follows that B is stable when ct > 1 and unstable when ct < 1. 

The Side  Points  R, S, and T. For ot > 1 there are three additional 
singular points R, S, and T on the sides of the state triangle. The Cartesian 
coordinates of the point T on the AB side are xT=f(ct)/Ct and YT---- --1/3. 
Note that for ~--+ l the point T approaches B. Linearizing the equations 
(1.5) around "this point in the same way as in the above cases, we find 

. . . .  ~ -  + (2.5) 

Since ~ >  1, it follows from (2.5) that R, S, and T are unstable. 
Summing up, we see that M loses stability at ct = 0. The corner points 

are unstable for ct < 1. At ct = 1 these points become stable and the unstable 
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Fig. 2. Stability of the various singular points. Re 2 vs. e. 

side points are born. This is illustrated in Fig. 2, where we have plotted the 
real part of the largest eigenvalue for k = 0 versus a. 

3. THE DIRECT REACTION (D) ( o = 0 )  

In this section we will consider only the direct reaction (D), so that we 
put 0~ = 0. In this case (1.5) becomes 

O2x(u, t) c3x 2 OP 

Ot + ~ Oy Ou 2 

OZy(u, t) Oy 2 0 P  
Ou 2 Ot x /~Ox 

(3.1) 

3.1. Uniform Solutions 

We first consider solutions which are uniform in space. They satisfy 
the ordinary differential equations 

dx(t) 2 0 P  1 
dt V/ 3 Oy - x /~ Y + --2 - ( x2 - y2) 

dy(t) 2 0 P  1 
, = x - - x / ~ x y  

dt - ~ Ox x/3 

(3.2) 
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Fig.  3. P e r i o d  o f  un i fo rm  so lu t i ons  as a func t ion  o f  P for  cc = 0. 

System (3.2) is Hamiltonian, with solutions lying on the closed curves 

P = ABC = const = Po (3.3) 

All solutions within the triangle (the only part of the phase space which is 
of interest to us) are periodic. An expression for the period of an orbit can 
also be given, but we preferred a numerical calculation. The resulting 
period T as a function of Po is shown in Fig. 3. 

For  orbits close to the boundary of the triangle, i.e., for P ~ 0, the 
period tends to infinity. For  P ~ 1/27 the orbits are almost circular and 
the period is found to be T ~  2re x//3. We will now consider the stability of 
the solutions of (3.2), which we denote by (xe(t),  ye(t)) ,  where P = A B C  
is conserved and 0 < P < 1/27. For  this purpose we consider a slightly per- 
turbed solution (xe(t)  + w(u, t), ye( t)  + z(u, t)) of (3.1). Substitution into 
(3.1) and linearizing in w and z gives 

o.2 \ z 
(3.4) 

where M(t)  is given by 

M(t)  = 

1 ) -,/Sx  ,/Sy 

1 , f i x  
(3.5) 
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and where we have written (x, y) for (xe(t), ye(t)). It is sufficient to 
investigate the stability of periodic perturbations. If therefore we write 

( w(u, t) 
(3.6) 

Eq. (3.4) becomes 

d (,,,~,l~=Al,~(,v(,~ ~ 
- f f t \ z ( t ) )  \ z ( t ) )  

(3.7) 

where now 

( ) 1 v/~ Y - k 2  + v/~ x /~ 

A(t) = 1 _ k  2 

, 5  d~ y - d~., 

(3.8) 

Defining the 2 x 2 matrix R(t) by 

dR(t) 
- A ( t )  R(t) 

dt 
and R(0) = I  (3.9) 

the general solution of (3.7) can be written as 

( , , ( , I )  = R(, / (w(o/)  
z(t)/ \z(0)) 

(3.10) 

From (3.9) one easily proves that 

d 
- - d e t  R(t) = T r  A(t) det R(t) 
dt 

The form (3.8) of A(t) then gives 

det R(t) = e -  x--', (3.11 ) 

Since A(t) is periodic with period T(P), the theorem of Floquet states that 
the matricant R(t) can be written as 

R(t) = Q(t) e c' (3.12) 

in which C is a constant matrix and Q(t) is periodic with period T and 
Q(O) = Q ( T ) = L  Equations (3.7) are stable for t ~ + cr iff all eigenvalues 
of R(T) = e cr lie on or within the unit circle. 
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This R(T) can be constructed by calculating the change during one 
period of two specially chosen initial perturbations 

= (w,(0)~ \ z , (O)J=kOJ (1~ (w2(0,'~ = (01) X,(0) and Z2(0) = \z2(0) j (3.13) 

where we have put t = 0 at the point where Zt(0) is tangential to the orbit 
and ;(2(0) perpendicular to it. The matricant at time T then becomes 

= (/w,(T) w2(T)~ (3.14) 
R(T) \ _ , ( T )  z2(T) J 

Since ;(t(t) will be tangent to the orbit, not only at t = 0 ,  but for all times, 
we find that zt(T)=;(~(0), so w~(T) = 1 and zffT) =0. If this is substituted 
into (3.11) we find z2(T)=e -zk'r and R(T) takes the form 

10 w~(T)'~ R(T) = e _ 2 k 2 T ;  (3.15) 

The eigenvalues are 

2+ = 1 and 2 -----e -21''-T (3.16) 

which for all k lie on or inside the unit circle. The uniform and periodic 
solutions of (3.2) are therefore (marginally) stable. 

Uniform solutions for which one species is extinct can also be found. 
Taking, e.g. C =  0, which corresponds to y = -1 /3 ,  Eq. (3.2) reduces to: 

which has the solution 

dt 2 x 2 - (3.17) 

x ( t ) =  ~ 3  tanh (~ t )  (3.18) 

The stability equations (3.7) for this solution become 

dw [- ~ 2 
w +  _ z  (3.19) 

~ = [ - k ' - + t a n h ( l t ) ]  z (3.20) 
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For a perturbation z (0 )=  0 along the line y = - 1 / 3 ,  Eq. (3.20) is satisfied 
by z ( t ) - O ,  and (3.19) then shows that w ( t ) ~ O  for t ~  or, so that the 
motion is stable. If, however, z(0):~0, we see from (3.20) that for k- '< 1 the 
function z(t)  eventually will increase. Therefore the solution (3.18) is not 
stable. 

3.2. Nonuniform Solutions 

We will now look for nonuniform solutions, in particular for the case 
that one of the species A, B, or C is nearly extinct. First consider the case 
that, say, C is completely extinct. In the x, y coordinates this corresponds 
to y - -  -- 1/3. The equation for x then reduces to 

O ' - x ( u , t ) _ O x  1 x, , /~{'x2_l ~ \  3J  (3.21) 
Ou 2 Ot 2 

As was mentioned in the introduction, (3.21) is equivalent with the famous 
Fisher-Kolmogorov equation. Of  particular interest are traveling wave 
solutions of the form 

x ( , ,  t) = v(u - ct) = v(z) (3.22) 

Substituting (3.22) into Eq. (3.21) yield 

(3.23) 

where differentiation is with respect to z. Written as a system, this becomes 

Vtl ~ /')2 
(3.24) 

V 2 =  - - C V 2 - - ~  - V E - ~ )  

Equation (3.24) has an unstable fixed point at (vl, v2)= ( - 1 / x / ~ ,  0) and a 
stable fixed point at (vl, v2)= (1/x/~, 0). 

For c = 2 there exists a heteroclinic connection between these fixed 
points, which for r ~ - ov approaches ~ -  l/x/~, 0) via the unstable eigen- 
vector and for T ~ oV approaches (1/~/3, 0) via the unique eigenvector at 
that point. [The value c = 2 is special, because Eq. (3.24), when linearized 
in ( l /v/3,  0), has two equal negative eigenvalues, but only one eigenvector. ] 

This heteroclinic connection corresponds to a moving front solution of 
(3.21) traveling with a speed c = 2 .  
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Although (3.24) admits heteroclinic solutions for all c>~2, the value 
c = 2  is particularly relevant, because it was shown by many authors 
(beginning with Kolmogorov in 1937) that a wide variety of initial condi- 
tions will all eventually develop into a moving front solution with c = 2. 
For  details and references see section 11.3 in Ref. 3. 

Motivated by these results, we now look for solutions of (3.1) of the 
form 

x(u, t )=v(u--ct)=v(z) ,  y(u, t )=w(u--c t )=w(z)  (3.25) 

with c = 2  and assuming that y is near y = - 1 / 3 .  Substituting (3.25) into 
(3.1) yields the system 

Oil ~ 112 

13.) - -  C11.) - - 1 % / / 3  ") "~ "~ '_ = _ + vT - w T )  _ ( ~ w l  
(3.26) 

t,VIl = W 2 

= l C W 2  + v/31'-,11, + 11, Wl) 

where again differentiation is with respect to z. Obviously, the plane 
w~ = -  1/3, w2 = 0 is invariant, corresponding to the extinction of species 
C. By symmetry, there exist similar invariant planes corresponding to the 
extinction of A and B. respectively. Within each invariant plane the phase 
diagram of (3.26) looks the same as that of (3.24). Apart from (v, w )=0 ,  
there exist three fixed points, corresponding to the extinction of two of the 
three species. Each of these fixed points lies in two invariant planes and we 
can construct a heteroclinic cycle between these points. Starting in (v~, v2, 
wt, w2)= ( - l / v / 3 ,  0, - 1 / 2 ,  0) (this point corresponds to the situation that 
B =  C = 0 ) ,  there exists a heteroclinic connection to (v~, v2, w,, w2)= 
( l /v/3,  0, - 1/3, 0) (corresponding to A = C = 0), lying in the plane C = 0. 
By symmetry there exists a connection between this point and 
(11~, 11,, w~, w,) = (0, 0, 2/3, 0) (corresponding with A = B = 0) and back to 
( - 1/~/3, 0, - 1/3, 0). 

Numerical simulations have shown that this cycle is attracting. When 
we start near one of the fixed points (say B =  C = 0 ) ,  the solution will 
closely follo~ the heteroclinic solution in the invariant plane C = 0, even- 
tually coming close to the fixed point A = C =  0. After some time, the 
solution will then follow the heteroclinic connection in the A = 0 plane, 
eventually coming close to the point A = B = 0, and so on in a cyclical 
fashion. We have found numerically that after each cycle, the minimal 
distance to the fixed point has decreased. In fact, this series of minimal 
distances converges very rapidly to zero. Correspondingly, the "time" spent 
near a fixed point grows with every cycle. 
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This solution has the following interpretation. An observer at a fixed 
point u on the line will first observe that B is approximately 1, and A and 
C approximately 0. After some time, this observer will see a front of species 
A pass, moving with speed c = 2, and for a long time A will remain approxi- 
mately 1 and B and C approximately 0. Some time later still, a front of 
species C will pass, and so on. The times between two successive fronts 
passing will grow ever larger, and after each cycle, the value of B will be 
closer to 1 (and A and C closer to 0). 

In the case of the Fisher-Kolmogorov equation there exists one par- 
ticular solution (the heteroclinic connection when c = 2 ) ,  which can be 
shown to be stable under small perturbations with certain regularity condi- 
tions, for instance, exponential decay at _+ or. (For  exact formulations we 
refer to Ref. 8). In the present case, there exists a whole family of solutions, 
characterized by the cyclical behavior sketched above. Although we have 
no proof, we believe that this family is stable, in the sense that a small, 
regular perturbation of a solution in this family will eventually converge to 
another member of this family. 

4. ADDING THE REVERSE REACTION (R) ( a > 0 )  

For  ~ > O, the equations for solutions which are uniform in space 
become 

dx(t) 8P OV 
d t = -- f Oy + ~ -~x 

dy(t) = f O P  OV 
dt 8x + o~ -~y 

From (1.2)-(1.4) it follows that 

1 dP(t) 

P(t) dt 
- - -  ~ ( x -  + y-') 

(4.1) 

(4.2) 

so that dP/dt < 0. This means that the orbit is pushed against the sides of 
the triangle and none of the periodic solutions survives. In Fig. 4 some 
solutions of (4.1) are shown. 

4.1. Ginzburg-Landau Approximation 

In Section 2.1 it was shown that for 0c>0, the solution x =  y = 0  
(corresponding to A = B =  C =  1/3) is unstable. We now want to study the 
behavior of solutions of (1.5) near this fixed point when 0c > 0 but small. 
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Fig. 4. Some solut ions of  t4.1 I. 

The standard procedure in this case is to derive a Ginzburg-Landau 
equation. 

The dispersion relation 2_+ = e / 6 -  k2+ ( / /2 ) f (~)  of (2.2) leads to the 
instability curve Re(2+ ) = ~/6 - k-' = 0. 

From this it follows that for ct < 0, all perturbations decay. At ~ = e,. = 0, 
perturbations with wavenumber k = k,. = 0 become unstable. When ct > 0 
there is an interval, defined by k 2 <  ct/6, of unstable wavenumbers. When 
ct= ct,. and k =k,., the solution of (3.1) is given in linear approximation by 
the so-called critical wave: (x, y ) r =  re~,,,,,( 1, i ) r +  c.c., where co,. = 1/2f(0) = 
l /v/3,  r is small, and c.c. stands for complex conjugation. 

In order to study the bifurcations of the solution x = y = 0 at e = ct., 
we scale ct by e = e 2 ~  and substitute for (x, y ) r  an expansion in e and 
Fourier modes, the first term of which is a slow modulation of the critical 
wave: (x, y)r=eA(~, r) el '"(1,  i ) r +  (_0(e2) -t- C.C. 

The variables ~ and r are rescaled space and time coordinates: ~ = eu, 
r=e-t. Using a well-known procedure, ~9~ we can derive an equation for 
A(~, r), 

0A 
02A + ~ ( 1 - i x / ~ ) A + 2 i x / ~ A  [A] 2 (4.3) 

Or = O~-" 

Equation (4.3) is an instance of the Ginzburg-Landau equation. There 
exists a vast literature on this equation. However, (4.3) is rather excep- 
tional since most authors study the Ginzburg-Landau equation under the 
assumption that the real part  of the coefficient of the A [AI 2 term is 
negative. In this case it is zero, which makes (4.3) degenerate. In general 
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there are doubts as to whether such an equation will be a valid approxima- 
tionJ ~o~ In spite of this we will use it, for reasons which will become clear 
in the following section. 

Equation (4.3) admits solutions of the type A((, r ) =  Re i~kr247 Sub- 
stitution yields 

o~ = - - -  + /~2, (4.4) 
2x,/~ 6 

In terms of the original variables, this solution becomes 

x(u,t) i ( 1 0 ~  6 R Z ) t _ ~ u  ] .,u,,) .ex.{ E (4.5) 

where R = e/~. 

4.2. Exact  So lut ions  

It  should be stressed that if (4.5) is a valid approximation at all, it is 
expected to be so only near x = y  = 0 and for small values of 0~> 0. It is 
remarkable, however, that a much better result can be obtained than 
expression (4.5). In fact, we can find exact solutions of (1.5) of roughly the 
same form as (4.5), and not necessarily near x =  y = 0 ,  for all values of 
0c > 0. There seems to be no structural reason for this phenomenon,  which 
was a computer-assisted discovery. 

Substituting into Eq.(1.5) the expressions (with some notational 
abuse) 

x(u, t ) = x ( u - c t ) = x ( z ) ,  y(u, t ) = y ( u - c t ) = y ( z )  (4.6) 

where the speed c is as yet undetermined, leads to the equations 

d2x dx OP 0 V 
dz z = -C  ~z + f(o~)-'~y -O~ ~x 

d 2 y - - c ~zz _ f ( oO O P o~ --O V 
dz 2 -~x-- Oy 

(4.7) 

This is a four-dimensional system of ordinary differential equations, for 
which there is no a priori hope that something can be said about  its 
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solutions. However, numerical solutions suggested that for a particular 
value of c, namely 

12 -~xl 
c = Co-  ~ (4.8) 

all solutions tended to orbits for which P(x, y) = const. The value of Co was 
found by linearizing (4.7) near x = y = 0 and determining the value of c for 
which bounded solutions existed for z ~ _+ oo.  

The numerical suggestion was confirmed when it was found that dif- 
ferentiating the expression 

dx f(o 0 OP 
dz Co Oy 

dy f(oO OP 
d z  c O Ox 

(4.9) 

with respect to z leads to the relations 

d2x OV 
- -  - -  ( ~  - -  

dz 2 Ox 

dZy O V 
dz 2 0y 

(4.10) 

From this it follows that a solution of (4.9) automatically satisfies (4.7), 
when c = Co. A more geometrical picture of the situation is obtained by 
writing (4.7) as a system 

x~ = x2 

t x 2 =  --cx 2 + f ( ~ )  

Y~ = 3'2 

y~= --cy2--f(~) 

OP(xl, Yl) OV(xt, YL) 
Oyl Oxl 

OP(xj, Yt) OV(xl, Yl) 
r 

a x  , Oy l 

(4.11) 

where we consider 0~ > 0 a fixed constant, c a bifurcation parameter, and 
differentiation is with respect to z. When c = Co, the solution (x~, x2, y t ,  Y2) = 
(0, 0, 0, 0) undergoes a Hopf  bifurcation, or at least the linearization of 
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(4.11) in this point has two purely imaginary eigenvalues and two eigen- 
values with negative real parts. According to centre-manifold theory, (t~ 
there then exists an invariant, locally attracting two-dimensional manifold. 
In this case, from (4.9) we derive an explicit parametrization of this 
manifold: 

f(ot) OP(xj, Yl) 
- ( 2 - -  - -  

Co ~Y I 

riot) OP(xl, Yl) 
Y2 = 

Co ~x I 

(4.12) 

The flow on this manifold is given by (4.9), which admits a constant of 
motion, namely P(x~, y~)--const.  This implies that the Hopf  bifurcation is 
degenerate. 

Equations (4.9) are very similar to the uniform equations (3.2). In fact, 
after scaling z by 5 = - [ f ( c t )  x/~/2c,] z, Eqs. (4.9) will have exactly the 
same form as (3.2), but now with .~ instead of t as the independent variable. 

The solutions of (3.2) are periodic and the orbits are fully determined 
by the value of P(x, y). Let P(x, y ) = p  and denote the solution of (3.2) by 
(xp(t), y~,(t)). Then the solution of (4.9), which is also a solution of (4.11), 
is (x~,(5), ye(5)). Solutions of this form can be described as traveling peri- 
odic waves. In terms of the original variables, we find 

x(u , t )=x l ,  1 - - ~  t -  u , y ( u , t ) = y  r l - -~ot  t -  u 

(4.13) 

For p ~ 1/27, x~, and yp are near x = y = 0 and the linear approximation is 
given by 

(xp(-Z),yl,(~-))r~,Rexp z (1, i ) r +  c.c 

with R small. Combining with (4.13) yields the approximation 

,414, 

Comparing (4.14) with (4.5), it is seen that (45) is a "nonlinear correction" 
on the linear approximation (4.14). 

However, (4.5) is itself only an asymptotic solution, with a very 
limited range of validity. 
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The solution (4.13) is exact, valid for all ~ > 0 ,  and, because we can 
take any 0 < p <  1/27, certainly not restricted to the neighborhood of 
x = y = 0--a  remarkable result, since it is rare to find exact, nontrivial 
solutions of coupled nonlinear partial differential equations. 

4.3. Stability 

The question of stability of the solutions (4.13) leads to formidable 
analytic difficulties. We can, however, study the stability of these solutions 
when (x, y) are near x = y = 0 ,  by using the Ginzburg-Landau equation 
(4.3) as an approximation. 

Putting 

A(~, r) = (R + p(~, r)) exp i{k~ + cot + 0(~, r)} (4.15) 

substituting into (4.3), and using the relations (4.4) then leads to equations 
for p(~,r)  and 0(~,r). Linearizing these equations and substituting 
(p(~, r), 0(d_, r)) r =  ei'~(X(r), Y(r)) r then yields a two-dimensional system 
of linear, ordinary differential equations: 

d 
~ r ( X ) = L ( q ) ( X )  (4.16) 

where the linear operator L(q) depends on the wavenumber q of the pertur- 
bation. The solution A(~, r ) =  R exp i{k~ + o)r} is stable iff the real part of 
the eigenvalues of L(q) is nonpositive for all q ~ R. A tedious but straight- 
forward calculation shows that this condition is not satisfied, and therefore 
these solutions are not stable. 

As was noted earlier, the validity of (4.3) as an approximation of(1.5) 
is not established in full rigor. Because of the similarity of the solutions 
(4.14) and (4.5), however, we feel justified to conclude that "small solu- 
tions", i.e., solutions with p ~  1/27, of type (4.13) are not stable. This 
method does not apply for other values of p, when the solution is not small. 
In those cases numerical studies (which we have not performed) may 
provide answers. 

4.4. Behav ior  near t h e  B o u n d a r y  

When one of the species is extinct, say C = 0, the equations reduce to 

1)(11 ) O2x(u,t) 8x ix~ ~ xZ - +g,v/3 x2-- 5 -~+-}.v/3x (4.17) 
Ou z 3t 2 
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This equation closely resembles the one studied in Ref. 12. As in the case 
= 0, we can find traveling front solutions connecting the critical points 

which correspond to the situations A = 1, B = 0 and A = 0, B = 1, respec- 
tively. The minimum value of the speed c for which such solutions exist is 
c~(~) = 2 x/1 - ~. Note that c1(0) = 2, the value which was found in Section 3. 

However, when we take C = C o = ( 2 - ~ ) / x / ~ - ~ ,  we can use the same 
method as in Section 4.2, and construct an explicit solution: 

1 1 
(4.18) 

In Fig. 5 the values of Co(S) and c~(~) are plotted. 
Following an argument in Ref. 10, it can be shown that for ~ < 2/3 a 

front will develop which travels with speed c~(~). When ~ >  2/3, the speed 
will be co(c0. 

When one of the species is nearly extinct, we expect the same behavior 
as in the ~ = 0 case: a series of traveling fronts, with the distances between 
successive fronts growing increasingly larger. When ~ is small, the numeri- 
cal results for the case ~ = 0 can be used to show that this is the case, the 
speed of the fronts being ct(~). For  larger co, a separate numerical simula- 
tion should be made to confirm our hypothesis. 

C CW 

2/3 1 

Fig. 5. Velocities c**=Co(~)  and c* =cl(c~) versus a. 
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5 CONCLUSIONS 

In this paper we have studied the behavior of a reaction-diffusion 
system with three species A, B, and C on a line, which participate in the 
reactions 

and 

A + B ~ 2 A ,  B + C ~ 2 B ,  C+A-- .2C (D) 

A + 2 B ~ 3 B ,  B + 2 C ~ 3 C ,  C + 2 A ~ 3 A  (R) 

The reaction (R) has a rate ~ with respect to the reaction (D). At a given 
time t and position u along the line, the concentrations A, B and C are 
represented by a point inside an equilateral triangle of unit height (see 
Fig. 1 ). we restrict ourselves to the case where the sum is and remains 
constant. 

We will now describe what we understand about the behavior of this 
system and what are still open questions. 

For  that purpose we will distinguish four classes: First, there are the 
fixed points. The point M represents the situation where all species are in 
equilibrium. This point is stable when ~ < 0 and unstable when ~ > 0. The 
corner points represent situations where two of the three species are extinct. 
These points are unstable when ~ < 1 and become stable when ~ > 1. At 
0c = 1 three new fixed points bifurcate from the corner points. They are 
unstable for 0~ > 1. 

Second, we have invariant subspaces, corresponding to the situation 
that one of the species is extinct. In this invariant subspace the problem 
reduces to the Fisher-Kolmogorov equation. Typically we find moving 
front solutions with speed c = 2 x /1 -0~  when 0 ~ ~ < 2/3 and c = ( 2 - 0 0 /  

when 2/3 ~< 0c < 1. 
Third, we have a family of solutions for which none of the species is 

extinct. For  ~ = 0 the equations for the uniform solution are Hamiltonian, 
leading to a family of periodic solutions (xp(t), yp(t)), parametrized by the 
value of P(x, y)= p. In a remarkable discovery, we have found that for 
0~ > 0 the system admits solutions of the form 

(xp((1-- �89 t - - ~ u ) , y r ( ( 1  t ~ ) t _ ~ u ) )  

which can be called traveling periodic waves. 
Finally, another family of solutions for which none of the species is 

extinct is given by a type of generalization of the Fisher-Kolmogorov 
fronts. These solutions consist of a series of successive fronts, where the 
times between two passing fronts grow increasingly larger. 

822/87/5-6-13 
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The most important open problem concerns the stability of the solu- 
tions in the last two classes. We conjecture that, at least for 0~ small, the 
successive front family is stable in some sense. 

As to the stability of the traveling periodic waves when a > 0, we 
simply have no idea. For a = 0 these solutions correspond to the uniform 
solutions, which we have shown to be (marginally) stable. 

Connected with these stability questions is the problem of the final 
state of a given initial distribution. For  a = 0 there are at least two stable 
types of eventual behavior: a uniform solution and a successive front solu- 
tion. Predicting which one will prevail, or whether perhaps there is yet 
another possibility, is a very interesting, but open problem. 

Most of the analytical methods which have been applied in the present 
paper will be of no use when the model is extended to two and three 
dimensions. Probably the best way to investigate the new phenomena 
which will undoubtedly appear is to construct a cellular automaton with 
the same general behavior. This undertaking we will leave, however, to 
Matthieu Ernst, to whom this article is dedicated on the occasion of his 
60th birthday. 
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